Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475709

RESUMEN

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas Virales/genética , Factores de Transcripción/metabolismo
2.
PLoS One ; 18(2): e0277535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730334

RESUMEN

The spiny-throated reed frog species group is a small radiation of Hyperolius frogs from East Africa. Unlike many members of the genus which have relatively wide distributions, these species tend to be small-range endemics found in montane and submontane forests. Recent discovery of a golden-hued frog with the clade-specific traits of spines on their gular discs prompted a morphological and genetic exploration of the distinctness of this new lineage and relationships to other members of the clade. Genetic (mitochondrial and nuclear loci) results resolved many sister-relationships, but deeper nodes in the phylogeny were poorly resolved. A reduced-representation genome-wide Single Nucleotide Polymorphism (SNP) dataset was able to fully resolve the phylogenetic relationships within this clade, placing this new lineage, here named after the mountain range in which is it found-H. ukaguruensis sp. nov., as an early diverging lineage within the group. This new species is distinct from all other spiny-throated reed frogs, necessitating further understanding as a single-mountain endemics vulnerable to habitat loss and potential decline. Morphometric analyses identify clear morphological characteristics that are distinct for the herein described species, most noticeably in that the eyes are significantly smaller than other members of the genus for which we have samples.


Asunto(s)
Anuros , Ecosistema , Animales , Tanzanía , Filogenia , Bosques , Bufonidae
3.
Zootaxa ; 4948(2): zootaxa.4948.2.5, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33757027

RESUMEN

A new subspecies of giant sengi or elephant-shrew, first documented in 2008, is described from northern coastal Kenya. All five currently described species and most known subspecies of Rhynchocyon are compared to this new lineage. Molecular analyses using mitochondrial and nuclear markers from the single DNA sample available for the new lineage show differences from other forms and reveal a close relationship with the allopatric golden-rumped sengi R. chrysopygus (0.43% divergence at the 12S mitochondrial locus). This level of 12S divergence is similar to that between other subspecies pairs within Rhynchocyon. Based on three voucher specimens and 843 images from camera traps, the new lineage is similar to R. chrysopygus in the rufous-maroon sides and shoulders but is distinguished by the lack of the golden rump, the presence of jet-black distal rump and thighs, dark dorsal line, and a pronounced nuchal crest of hairs. Though it also shows superficial pelage similarities to two Tanzania species, R. udzungwensis and the dark coastal form of R. cirnei macrurus, the new form has differences in pelage coloration that are clearly diagnosable from all other taxa. This new lineage has an allopatric distribution to all known Rhynchocyon taxa, with the closest congener being R. chrysopygus located 140 km apart. We estimate a potential range size for the new taxon of ~1980 km2 in the Boni and Dodori National Reserves with habitat consisting of mixed thickets and dry forests. Because of its close genetic relationship with R. chrysopygus, its allopatric distribution, and divergent coloration, the new subspecies is designated Rhynchocyon chrysopygus mandelai. The previously described populations of R. chrysopygus from southern coastal Kenya are now designated R. chrysopygus chrysopygus. As the current severe political insecurity in the area threatens the new taxon, we hope that its description will help establish immediate conservation priorities and action for the subspecies and its habitat.


Asunto(s)
Ecosistema , Musarañas , Animales , Kenia , Filogenia
4.
Mol Phylogenet Evol ; 154: 107001, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130298

RESUMEN

Giant sengis, or elephant-shrews (Macroscelidea; Macroscelididae; Rhynchocyon), are small-bodied mammals found in central and eastern African forests. Studies have provided contrasting views of the extent and direction of introgression among species. We generated full mitochondrial genomes, and compiled publically available mtDNA 12S and nuclear vWF sequences from Rhynchocyon cirnei, R. petersi and R. udzungwensis that had not previously been analyzed in concert, to elucidate the phylogenetic and population-specific context of potential introgression. Our spatially and phylogenetically broad sampling across species revealed substantial, unidirectional mitochondrial introgression of the R. petersi lineage into R. cirnei reichardi and R. udzungwensis, and from R. udzungwensis into R. c. reichardi. All introgression was highly localized and found only in the eastern Udzungwa Mountains forests in Tanzania. The nuclear data showed another pattern, with R. petersi haplotypes in R. cirnei cirnei and R. c. reichardi. No individuals showed both mitochondrial and nuclear introgression. Our results suggest higher levels of hybridization among giant sengi species than previously recognized, but also highlight the need for further genome-wide analysis and increased spatial sampling to clarify the many aspects of diversification and introgression in this group.


Asunto(s)
Musarañas/clasificación , Musarañas/genética , Animales , Núcleo Celular/genética , ADN Intergénico/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , Geografía , Haplotipos/genética , Hibridación Genética , Filogenia , Tanzanía
5.
Sci Rep ; 10(1): 5615, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221410

RESUMEN

Caterpillars of the silk moth genus Hyalophora (Lepidoptera; Saturniidae) construct multilayered cocoons that function as overwintering housing during the pupal to adult developmental period. While all cocoons share the primary function of protecting the developing moth, cocoons spun by different Hyalophora silk moth species vary significantly in architectural features and in the level of intraspecific cocoon-type polymorphism. We compared the cocoons of Hyalophora species found throughout North America and investigated the evolution of architectural variation. We first characterized and compared the architectural features of cocoons at all three cocoon sections (outer envelope, inner envelope, and the intermediate section that separates them), and found that variation in the outer envelope underlies the differences in architecture between cocoons. Phylogenetic analysis indicates ancestral polymorphic architecture (both "baggy" and "compact" morphs), with diversification within Hyalophora for both monomorphic "compact" cocoons, and increased intermediate space and silk in "baggy" lineages. The evolution of these traits suggests a potential functional role for the different cocoon architectural forms.


Asunto(s)
Bombyx/fisiología , Lepidópteros/fisiología , Animales , Bombyx/genética , Lepidópteros/genética , América del Norte , Filogenia , Pupa/genética , Pupa/fisiología
6.
Syst Biol ; 68(6): 859-875, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31140573

RESUMEN

Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.


Asunto(s)
Anuros/clasificación , Filogenia , Pigmentación , África , Animales , Anuros/fisiología , Evolución Biológica , Femenino , Masculino , Caracteres Sexuales
7.
Zootaxa ; 4379(2): 177-198, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29689983

RESUMEN

A new species of African reed frog (genus Hyperolius Rapp, 1842) is described from the Coastal Forests of the Eastern Africa Biodiversity Hotspot in northeastern Mozambique. It is currently only known from less than ten localities associated with the Mozambican coastal pans system, but may also occur in the southeastern corner of Tanzania. Phylogenetic reconstructions using the mitochondrial 16S marker revealed that it is the sister taxon of Hyperolius mitchelli (>5.6% 16S mtDNA sequence divergence) and forms part of a larger H. mitchelli complex with H. mitchelli and H. rubrovermiculatus. The new species is distinguished from other closely related Hyperolius species by genetic divergence, morphology, vocalisation, and dorsal colouration.


Asunto(s)
Anuros , Animales , ADN Mitocondrial , Bosques , Mozambique , Filogenia , Tanzanía
8.
Mol Phylogenet Evol ; 114: 261-270, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28684366

RESUMEN

Ecological niche models (ENMs) have been used in a wide range of ecological and evolutionary studies. In biogeographic studies these models have, among other things, helped in the discovery of new allopatric populations, and even new species. However, small sample sizes and questionable taxonomic delimitation can challenge models, often decreasing their accuracy. Herein we examine the sensitivity of ENMs to the addition of new, geographically isolated populations, and the impact of applying different taxonomic delimitations. The East African reed frog Hyperolius substriatus Ahl, 1931 was selected as a case study because it has been the subject of previous ENM predictions. Our results suggest that addition of new data and reanalysis of species lineages of H. substriatus improved our understanding of the evolutionary history of this group of frogs. ENMs provided robust predictions, even when some populations were deliberately excluded from the models. Splitting the lineages based on genetic relationships and analysing the ENMs separately provided insights about the biogeographical processes that led to the current distribution of H. substriatus.


Asunto(s)
Anuros/clasificación , África Oriental , Animales , Anuros/genética , Evolución Biológica , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Ecología , Flujo Génico , Ligamiento Genético , Filogenia , Filogeografía , Proproteína Convertasas/clasificación , Proproteína Convertasas/genética , Proteínas Proto-Oncogénicas c-myc/clasificación , Proteínas Proto-Oncogénicas c-myc/genética , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Mol Ecol ; 26(19): 4978-4989, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28475225

RESUMEN

Beak shape in Darwin's ground finches (Geospiza) is emblematic of natural selection and adaptive radiation, yet our understanding of the genetic basis of beak shape variation, and thus the genetic target of natural selection, is still evolving. Here we reveal the genomic architecture of beak shape variation using genomewide comparisons of four closely related and hybridizing species across 13 islands subject to parallel natural selection. Pairwise contrasts among species were used to identify a large number of genomic loci that are consistently related to species differences across a complex landscape. These loci are associated with hundreds of genes that have enriched GO categories significantly associated with development. One genomic region of particular interest is a section of Chromosome 1A with many candidate genes and increased linkage. The distinct, pointed beak shape of the cactus finch is linked to an excess of intermediate frequency alleles and increased heterozygosity in significant SNPs, but not across the rest of the genome. Alleles associated with pointier beaks among species were associated with pointier-beaked populations within each species, thus establishing a common basis for natural selection, species divergence and adaptive radiation. The adaptive genomic landscape for Darwin's finches mirrors theoretical expectations based on morphological variation. The implication that a large number of genes are actively maintained to facilitate beak variation across parallel populations with documented interspecies admixture challenges our understanding of evolutionary processes in the wild.


Asunto(s)
Pico/anatomía & histología , Pinzones/genética , Selección Genética , Adaptación Biológica/genética , Alelos , Animales , Ecuador , Ligamiento Genético , Sitios Genéticos , Genética de Población , Hibridación Genética , Islas , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
10.
Mol Phylogenet Evol ; 106: 254-269, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664344

RESUMEN

The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African radiation and niche divergence shaping populations in West Africa and Madagascar. Central Africa, including the Albertine Rift region, has been an important center of diversification for this species complex.


Asunto(s)
Ranidae/clasificación , África , Animales , Teorema de Bayes , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Ecología , Haplotipos , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Madagascar , Filogenia , Filogeografía , Análisis de Componente Principal , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ranidae/genética , Análisis de Secuencia de ADN
11.
BMC Evol Biol ; 15: 128, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26126573

RESUMEN

BACKGROUND: Peripatric speciation and peripheral isolation have uncertain importance in species accumulation, and are largely overshadowed by assumed dominance of allopatric modes of speciation. Understanding the role of different speciation mechanisms within biodiversity hotspots is central to understanding the generation of biological diversity. Here, we use a phylogeographic analysis of the spiny-throated reed frogs and examine sister pairings with unbalanced current distributional ranges for characteristics of peripatric speciation. We further investigate whether forest/grassland mosaic adapted species are more likely created through peripatric speciation due to instability of this habitat type. RESULTS: We reconstructed a multi-locus molecular phylogeny of spiny-throated reed frogs which we then combined with comparative morphologic data to delimit species and analyze historical demographic change; identifying three new species. Three potential peripatric speciation events were identified along with one case of allopatric speciation. Peripatric speciation is supported through uneven potential and realized distributions and uneven population size estimates based on field collections. An associated climate shift was observed in most potentially peripatric splits. Morphological variation was highest in sexually dimorphic traits such as body size and gular shape, but this variation was not limited to peripatric species pairs as hypothesized. The potentially allopatric species pair showed no niche shifts and equivalent effective population sizes, ruling out peripatry in that speciation event. Two major ecological niche shifts were recovered within this radiation, possibly as adaptations to occupy areas of grassland that became more prevalent in the last 5 million years. Restricted and fluctuating grassland mosaics within forests might promote peripatric speciation in the Eastern Arc Biodiversity Hotspot (EABH). CONCLUSIONS: In our case study, peripatric speciation appears to be an important driver of diversity within the EABH biodiversity hotspot, implying it could be a significant speciation mechanism in highly fragmented ecosystems. Extensive peripatric speciation in this montane archipelago may explain the abundance of discrete lineages within the limited area of the EABH, as inferred in remote island archipelagos. Future phylogenetic studies incorporating demographic and spatial analyses will clarify the role of peripatric speciation in creating biodiversity hotspots.


Asunto(s)
Anuros/clasificación , Anuros/genética , África Oriental , Animales , Biodiversidad , Clima , Ecosistema , Femenino , Masculino , Filogenia , Filogeografía
12.
BMC Res Notes ; 8: 167, 2015 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-25909565

RESUMEN

BACKGROUND: The East African spiny-throated reed frog complex (Hyperolius spinigularis, H. tanneri, and H. minutissimus) is comprised of morphologically similar species with highly fragmented populations across the Eastern Afromontane Region. Recent genetic evidence has supported the distinctiveness of populations suggesting a number of cryptic species. We analyse newly collected morphological data and evaluate the taxonomic distinctiveness of populations. RESULTS: We find three new distinct species on the basis of morphological and molecular evidence. The primary morphological traits distinguishing species within the Hyperolius spinigularis complex include the proportions and degree of spinosity of the gular flap in males and snout-urostyle length in females. Other features allow the three species to be distinguished from each other (genetics). We refine the understanding of H. minutissimus which can be found in both forest and grassland habitats of the Udzungwa Mountains, and provide more details on the call of this species. Further details on ecology are noted for all species where known. CONCLUSIONS: Three new species are described and we narrow the definition and distribution of Hyperolius spinigularis and H. minutissimus in East Africa. The spiny-throated reed frogs have highly restricted distributions across the fragmented mountains of the Eastern Afromontane region. Given the newly defined and substantially narrower distributions of these spiny-throated reed frog species, conservation concerns are outlined.


Asunto(s)
Anuros/fisiología , Bosques , Altitud , Animales , Teorema de Bayes , Ecosistema , Femenino , Variación Genética , Masculino , Mitocondrias/metabolismo , Nucleótidos/genética , Filogenia , Especificidad de la Especie , Tanzanía
13.
Evolution ; 68(10): 2932-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24976076

RESUMEN

Many classic examples of adaptive radiations take place within fragmented systems such as islands or mountains, but the roles of mosaic landscapes and variable gene flow in facilitating species diversification is poorly understood. Here we combine phylogenetic and landscape genetic approaches to understand diversification in Darwin's finches, a model adaptive radiation. We combined sequence data from 14 nuclear introns, mitochondrial markers, and microsatellite variation from 51 populations of all 15 recognized species. Phylogenetic species-trees recovered seven major finch clades: ground, tree, vegetarian, Cocos Island, grey and green warbler finches, and a distinct clade of sharp-beaked ground finches (Geospiza cf. difficilis) basal to all ground and tree finches. The ground and tree finch clades lack species-level phylogenetic structure. Interisland gene flow and interspecies introgression vary geographically in predictable ways. First, several species exhibit concordant patterns of population divergence across the channel separating the Galápagos platform islands from the separate volcanic province of northern islands. Second, peripheral islands have more admixed populations while central islands maintain more distinct species boundaries. This landscape perspective highlights a likely role for isolation of peripheral populations in initial divergence, and demonstrates that peripheral populations may maintain genetic diversity through outbreeding during the initial stages of speciation.


Asunto(s)
Evolución Biológica , Pinzones/genética , Flujo Génico , Especiación Genética , Filogenia , Animales , ADN Mitocondrial/genética , Ecuador , Pinzones/clasificación , Haplotipos , Intrones , Islas , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
14.
PLoS One ; 8(8): e72506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015252

RESUMEN

Rhynchocyon udzungwensis is a recently described and poorly understood sengi (giant elephant-shrew) endemic to two small montane forests in Southern Tanzania, and surrounded in lower forests by R. cirnei reichardi. In this study, we investigate the molecular genetic relationship between R. udzungwensis and R. c. reichardi, and the possible role that shifting species distributions in response to climate fluctuations may have played in shaping their evolutionary history. Rhynchocyon udzungwensis and R. c. reichardi individuals were sampled from five localities for genetic analyses. Three mitochondrial and two nuclear loci were used to construct species trees for delimitation and to determine whether introgression was detectable either from ancient or ongoing hybridization. All species-tree results show R. udzungwensis and R. c. reichardi as distinct lineages, though mtDNA shows evidence of introgression in some populations. Nuclear loci of each species were monophyletic, implying introgression is exclusively historical. Because we found evidence of introgression, we used distribution data and species distribution modelling for present, glacial, and interglacial climate cycles to predict how shifting species distributions may have facilitated hybridization in some populations. Though interpretations are affected by the limited range of these species, a likely scenario is that the mtDNA introgression found in eastern mid-elevation populations was facilitated by low numbers of R. udzungwensis that expanded into lowland heavily occupied R. c. reichardi areas during interglacial climate cycles. These results imply that relationships within the genus Rhynchocyon may be confounded by porous species boundaries and introgression, even if species are not currently sympatric.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Filogenia , Musarañas/genética , Animales , Especificidad de la Especie , Tanzanía
15.
Mol Ecol ; 22(7): 1947-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23379719

RESUMEN

The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution.


Asunto(s)
Anuros/genética , Biodiversidad , Variación Genética , África Oriental , Animales , Anuros/clasificación , ADN Mitocondrial/genética , Ecosistema , Evolución Molecular , Flujo Génico , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Filogeografía , Dinámica Poblacional , Análisis de Secuencia de ADN
16.
Proc Biol Sci ; 279(1741): 3217-22, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22535783

RESUMEN

Supergenes are clusters of tightly linked loci maintained in specific allelic combinations to facilitate co-segregation of genes governing adaptive phenotypes. In species where strong selection potentially operates at different levels (e.g. eusocial Hymenoptera), positive selection acting within a population to maintain specific allelic combinations in supergenes may have unexpected consequences for some individuals, including the preservation of disadvantageous traits. The nuclear gene Gp-9 in the invasive fire ant Solenopsis invicta is part of a non-recombining, polymorphic supergene region associated with polymorphism in social organization as well as traits affecting physiology, fecundity and behaviour. We show that both male reproductive success and facultative polyandry in queens have a simple genetic basis and are dependent on male Gp-9 genotype. Gp-9(b) males are unable to maintain exclusive reproductive control over their mates such that queens mated to Gp-9(b) males remain highly receptive to remating. Queens mated to multiple Gp-9(B) males are rare. This difference appears to be independent of mating plug production in fertile males of each Gp-9 genotype. However, Gp-9(b) males have significantly lower sperm counts than Gp-9(B) males, which could be a cue to females to seek additional mates. Despite the reduced fitness of Gp-9(b) males, polygyne worker-induced selective mortality of sexuals lacking b-like alleles coupled with the overall success of the polygyne social form act to maintain the Gp-9(b) allele within nature. Our findings highlight how strong worker-induced selection acting to maintain the Gp-9(b) allele in the polygyne social form may simultaneously result in reduced reproductive fitness for individual sexual offspring.


Asunto(s)
Hormigas/genética , Aptitud Genética/genética , Variación Genética/genética , Proteínas de Insectos/genética , Conducta Social , Alelos , Animales , Hormigas/fisiología , Femenino , Masculino , Receptores Odorantes/genética , Selección Genética , Caracteres Sexuales
17.
Mol Ecol ; 19(18): 4046-60, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20735741

RESUMEN

Species with similar geographical distribution patterns are often assumed to have a shared biogeographical history, an assumption that can be tested with a combination of molecular, spatial, and environmental data. This study investigates three lineages of Hyperolius frogs with concordant ranges within the Eastern Afromontane Biodiversity Hotspot to determine whether allopatric populations of co-distributed lineages shared a parallel biogeographical response to their shared paleoclimatic histories. The roles of refugial distributions, isolation, and climate cycles in shaping their histories are examined through Hierarchical Approximate Bayesian Computation, comparative phylogeography, and comparisons of current and past geographical distributions using ecological niche models. Results from these analyses show these three lineages to have independent evolutionary histories, which current spatial configurations of sparsely available habitat (montane wetlands) have moulded into convergent geographical ranges. In spite of independent phylogeographical histories, diversification events are temporally concentrated, implying that past vicariant events were significant at the generic level. This mixture of apparently disparate histories is likely due to quantifiably different patterns of expansion and retreat among species in response to past climate cycles. Combining climate modelling and phylogeographical data can reveal unrecognized complexities in the evolution of co-distributed taxa.


Asunto(s)
Anuros/genética , Evolución Molecular , Filogeografía , Animales , Teorema de Bayes , Clima , Ecosistema , Geografía , Modelos Genéticos , Análisis de Secuencia de ADN , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...